Metamath Proof Explorer


Theorem ltaddpr

Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of Gleason p. 123. (Contributed by NM, 26-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion ltaddpr A 𝑷 B 𝑷 A < 𝑷 A + 𝑷 B

Proof

Step Hyp Ref Expression
1 prn0 B 𝑷 B
2 n0 B y y B
3 1 2 sylib B 𝑷 y y B
4 3 adantl A 𝑷 B 𝑷 y y B
5 addclpr A 𝑷 B 𝑷 A + 𝑷 B 𝑷
6 df-plp + 𝑷 = w 𝑷 , v 𝑷 x | y w z v x = y + 𝑸 z
7 addclnq y 𝑸 z 𝑸 y + 𝑸 z 𝑸
8 6 7 genpprecl A 𝑷 B 𝑷 x A y B x + 𝑸 y A + 𝑷 B
9 8 imp A 𝑷 B 𝑷 x A y B x + 𝑸 y A + 𝑷 B
10 elprnq A + 𝑷 B 𝑷 x + 𝑸 y A + 𝑷 B x + 𝑸 y 𝑸
11 addnqf + 𝑸 : 𝑸 × 𝑸 𝑸
12 11 fdmi dom + 𝑸 = 𝑸 × 𝑸
13 0nnq ¬ 𝑸
14 12 13 ndmovrcl x + 𝑸 y 𝑸 x 𝑸 y 𝑸
15 ltaddnq x 𝑸 y 𝑸 x < 𝑸 x + 𝑸 y
16 10 14 15 3syl A + 𝑷 B 𝑷 x + 𝑸 y A + 𝑷 B x < 𝑸 x + 𝑸 y
17 prcdnq A + 𝑷 B 𝑷 x + 𝑸 y A + 𝑷 B x < 𝑸 x + 𝑸 y x A + 𝑷 B
18 16 17 mpd A + 𝑷 B 𝑷 x + 𝑸 y A + 𝑷 B x A + 𝑷 B
19 5 9 18 syl2an2r A 𝑷 B 𝑷 x A y B x A + 𝑷 B
20 19 exp32 A 𝑷 B 𝑷 x A y B x A + 𝑷 B
21 20 com23 A 𝑷 B 𝑷 y B x A x A + 𝑷 B
22 21 alrimdv A 𝑷 B 𝑷 y B x x A x A + 𝑷 B
23 dfss2 A A + 𝑷 B x x A x A + 𝑷 B
24 22 23 syl6ibr A 𝑷 B 𝑷 y B A A + 𝑷 B
25 vex y V
26 25 prlem934 A 𝑷 x A ¬ x + 𝑸 y A
27 26 adantr A 𝑷 B 𝑷 x A ¬ x + 𝑸 y A
28 eleq2 A = A + 𝑷 B x + 𝑸 y A x + 𝑸 y A + 𝑷 B
29 28 biimprcd x + 𝑸 y A + 𝑷 B A = A + 𝑷 B x + 𝑸 y A
30 29 con3d x + 𝑸 y A + 𝑷 B ¬ x + 𝑸 y A ¬ A = A + 𝑷 B
31 8 30 syl6 A 𝑷 B 𝑷 x A y B ¬ x + 𝑸 y A ¬ A = A + 𝑷 B
32 31 expd A 𝑷 B 𝑷 x A y B ¬ x + 𝑸 y A ¬ A = A + 𝑷 B
33 32 com34 A 𝑷 B 𝑷 x A ¬ x + 𝑸 y A y B ¬ A = A + 𝑷 B
34 33 rexlimdv A 𝑷 B 𝑷 x A ¬ x + 𝑸 y A y B ¬ A = A + 𝑷 B
35 27 34 mpd A 𝑷 B 𝑷 y B ¬ A = A + 𝑷 B
36 24 35 jcad A 𝑷 B 𝑷 y B A A + 𝑷 B ¬ A = A + 𝑷 B
37 dfpss2 A A + 𝑷 B A A + 𝑷 B ¬ A = A + 𝑷 B
38 36 37 syl6ibr A 𝑷 B 𝑷 y B A A + 𝑷 B
39 38 exlimdv A 𝑷 B 𝑷 y y B A A + 𝑷 B
40 4 39 mpd A 𝑷 B 𝑷 A A + 𝑷 B
41 ltprord A 𝑷 A + 𝑷 B 𝑷 A < 𝑷 A + 𝑷 B A A + 𝑷 B
42 5 41 syldan A 𝑷 B 𝑷 A < 𝑷 A + 𝑷 B A A + 𝑷 B
43 40 42 mpbird A 𝑷 B 𝑷 A < 𝑷 A + 𝑷 B