Metamath Proof Explorer


Theorem ltaddrp

Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion ltaddrp A B + A < A + B

Proof

Step Hyp Ref Expression
1 elrp B + B 0 < B
2 ltaddpos B A 0 < B A < A + B
3 2 biimpd B A 0 < B A < A + B
4 3 expcom A B 0 < B A < A + B
5 4 imp32 A B 0 < B A < A + B
6 1 5 sylan2b A B + A < A + B