Metamath Proof Explorer


Theorem ltaddrp2d

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
Assertion ltaddrp2d φ A < B + A

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 1 2 ltaddrpd φ A < A + B
4 1 recnd φ A
5 2 rpcnd φ B
6 4 5 addcomd φ A + B = B + A
7 3 6 breqtrd φ A < B + A