Metamath Proof Explorer


Theorem ltapr

Description: Ordering property of addition. Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion ltapr C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B

Proof

Step Hyp Ref Expression
1 dmplp dom + 𝑷 = 𝑷 × 𝑷
2 ltrelpr < 𝑷 𝑷 × 𝑷
3 0npr ¬ 𝑷
4 ltaprlem C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
5 4 adantr C 𝑷 B 𝑷 A 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
6 olc C + 𝑷 A < 𝑷 C + 𝑷 B C + 𝑷 B = C + 𝑷 A C + 𝑷 A < 𝑷 C + 𝑷 B
7 ltaprlem C 𝑷 B < 𝑷 A C + 𝑷 B < 𝑷 C + 𝑷 A
8 7 adantr C 𝑷 B 𝑷 A 𝑷 B < 𝑷 A C + 𝑷 B < 𝑷 C + 𝑷 A
9 ltsopr < 𝑷 Or 𝑷
10 sotric < 𝑷 Or 𝑷 B 𝑷 A 𝑷 B < 𝑷 A ¬ B = A A < 𝑷 B
11 9 10 mpan B 𝑷 A 𝑷 B < 𝑷 A ¬ B = A A < 𝑷 B
12 11 adantl C 𝑷 B 𝑷 A 𝑷 B < 𝑷 A ¬ B = A A < 𝑷 B
13 addclpr C 𝑷 B 𝑷 C + 𝑷 B 𝑷
14 addclpr C 𝑷 A 𝑷 C + 𝑷 A 𝑷
15 13 14 anim12dan C 𝑷 B 𝑷 A 𝑷 C + 𝑷 B 𝑷 C + 𝑷 A 𝑷
16 sotric < 𝑷 Or 𝑷 C + 𝑷 B 𝑷 C + 𝑷 A 𝑷 C + 𝑷 B < 𝑷 C + 𝑷 A ¬ C + 𝑷 B = C + 𝑷 A C + 𝑷 A < 𝑷 C + 𝑷 B
17 9 15 16 sylancr C 𝑷 B 𝑷 A 𝑷 C + 𝑷 B < 𝑷 C + 𝑷 A ¬ C + 𝑷 B = C + 𝑷 A C + 𝑷 A < 𝑷 C + 𝑷 B
18 8 12 17 3imtr3d C 𝑷 B 𝑷 A 𝑷 ¬ B = A A < 𝑷 B ¬ C + 𝑷 B = C + 𝑷 A C + 𝑷 A < 𝑷 C + 𝑷 B
19 18 con4d C 𝑷 B 𝑷 A 𝑷 C + 𝑷 B = C + 𝑷 A C + 𝑷 A < 𝑷 C + 𝑷 B B = A A < 𝑷 B
20 6 19 syl5 C 𝑷 B 𝑷 A 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B B = A A < 𝑷 B
21 df-or B = A A < 𝑷 B ¬ B = A A < 𝑷 B
22 20 21 syl6ib C 𝑷 B 𝑷 A 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B ¬ B = A A < 𝑷 B
23 22 com23 C 𝑷 B 𝑷 A 𝑷 ¬ B = A C + 𝑷 A < 𝑷 C + 𝑷 B A < 𝑷 B
24 9 2 soirri ¬ C + 𝑷 A < 𝑷 C + 𝑷 A
25 oveq2 B = A C + 𝑷 B = C + 𝑷 A
26 25 breq2d B = A C + 𝑷 A < 𝑷 C + 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 A
27 24 26 mtbiri B = A ¬ C + 𝑷 A < 𝑷 C + 𝑷 B
28 27 pm2.21d B = A C + 𝑷 A < 𝑷 C + 𝑷 B A < 𝑷 B
29 23 28 pm2.61d2 C 𝑷 B 𝑷 A 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B A < 𝑷 B
30 5 29 impbid C 𝑷 B 𝑷 A 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
31 30 3impb C 𝑷 B 𝑷 A 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
32 31 3com13 A 𝑷 B 𝑷 C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
33 1 2 3 32 ndmovord C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B