Metamath Proof Explorer


Theorem ltaprlem

Description: Lemma for Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion ltaprlem C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B

Proof

Step Hyp Ref Expression
1 ltrelpr < 𝑷 𝑷 × 𝑷
2 1 brel A < 𝑷 B A 𝑷 B 𝑷
3 2 simpld A < 𝑷 B A 𝑷
4 ltexpri A < 𝑷 B x 𝑷 A + 𝑷 x = B
5 addclpr C 𝑷 A 𝑷 C + 𝑷 A 𝑷
6 ltaddpr C + 𝑷 A 𝑷 x 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 A + 𝑷 x
7 addasspr C + 𝑷 A + 𝑷 x = C + 𝑷 A + 𝑷 x
8 oveq2 A + 𝑷 x = B C + 𝑷 A + 𝑷 x = C + 𝑷 B
9 7 8 eqtrid A + 𝑷 x = B C + 𝑷 A + 𝑷 x = C + 𝑷 B
10 9 breq2d A + 𝑷 x = B C + 𝑷 A < 𝑷 C + 𝑷 A + 𝑷 x C + 𝑷 A < 𝑷 C + 𝑷 B
11 6 10 syl5ib A + 𝑷 x = B C + 𝑷 A 𝑷 x 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B
12 11 expd A + 𝑷 x = B C + 𝑷 A 𝑷 x 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B
13 5 12 syl5 A + 𝑷 x = B C 𝑷 A 𝑷 x 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B
14 13 com3r x 𝑷 A + 𝑷 x = B C 𝑷 A 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B
15 14 rexlimiv x 𝑷 A + 𝑷 x = B C 𝑷 A 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B
16 4 15 syl A < 𝑷 B C 𝑷 A 𝑷 C + 𝑷 A < 𝑷 C + 𝑷 B
17 3 16 sylan2i A < 𝑷 B C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
18 17 expd A < 𝑷 B C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B
19 18 pm2.43b C 𝑷 A < 𝑷 B C + 𝑷 A < 𝑷 C + 𝑷 B