Step |
Hyp |
Ref |
Expression |
1 |
|
dmaddsr |
|
2 |
|
ltrelsr |
|
3 |
|
0nsr |
|
4 |
|
df-nr |
|
5 |
|
oveq1 |
|
6 |
|
oveq1 |
|
7 |
5 6
|
breq12d |
|
8 |
7
|
bibi2d |
|
9 |
|
breq1 |
|
10 |
|
oveq2 |
|
11 |
10
|
breq1d |
|
12 |
9 11
|
bibi12d |
|
13 |
|
breq2 |
|
14 |
|
oveq2 |
|
15 |
14
|
breq2d |
|
16 |
13 15
|
bibi12d |
|
17 |
|
addclpr |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
ltapr |
|
20 |
|
ltsrpr |
|
21 |
|
ltsrpr |
|
22 |
|
vex |
|
23 |
|
vex |
|
24 |
|
vex |
|
25 |
|
addcompr |
|
26 |
|
addasspr |
|
27 |
|
vex |
|
28 |
22 23 24 25 26 27
|
caov4 |
|
29 |
|
addcompr |
|
30 |
|
vex |
|
31 |
|
addcompr |
|
32 |
|
addasspr |
|
33 |
|
vex |
|
34 |
22 30 24 31 32 33
|
caov42 |
|
35 |
29 34
|
eqtri |
|
36 |
28 35
|
breq12i |
|
37 |
21 36
|
bitri |
|
38 |
19 20 37
|
3bitr4g |
|
39 |
18 38
|
syl |
|
40 |
|
addsrpr |
|
41 |
40
|
3adant3 |
|
42 |
|
addsrpr |
|
43 |
42
|
3adant2 |
|
44 |
41 43
|
breq12d |
|
45 |
39 44
|
bitr4d |
|
46 |
4 8 12 16 45
|
3ecoptocl |
|
47 |
46
|
3coml |
|
48 |
1 2 3 47
|
ndmovord |
|