| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrelnq |
|
| 2 |
1
|
brel |
|
| 3 |
2
|
simprd |
|
| 4 |
|
ltexnq |
|
| 5 |
|
eleq1 |
|
| 6 |
5
|
biimparc |
|
| 7 |
|
addnqf |
|
| 8 |
7
|
fdmi |
|
| 9 |
|
0nnq |
|
| 10 |
8 9
|
ndmovrcl |
|
| 11 |
6 10
|
syl |
|
| 12 |
11
|
simprd |
|
| 13 |
|
nsmallnq |
|
| 14 |
11
|
simpld |
|
| 15 |
1
|
brel |
|
| 16 |
15
|
simpld |
|
| 17 |
|
ltaddnq |
|
| 18 |
14 16 17
|
syl2an |
|
| 19 |
|
ltanq |
|
| 20 |
19
|
biimpa |
|
| 21 |
14 20
|
sylan |
|
| 22 |
|
simplr |
|
| 23 |
21 22
|
breqtrd |
|
| 24 |
|
ovex |
|
| 25 |
|
breq2 |
|
| 26 |
|
breq1 |
|
| 27 |
25 26
|
anbi12d |
|
| 28 |
24 27
|
spcev |
|
| 29 |
18 23 28
|
syl2anc |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
exlimdv |
|
| 32 |
13 31
|
syl5 |
|
| 33 |
12 32
|
mpd |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
exlimdv |
|
| 36 |
4 35
|
sylbid |
|
| 37 |
3 36
|
mpcom |
|
| 38 |
|
ltsonq |
|
| 39 |
38 1
|
sotri |
|
| 40 |
39
|
exlimiv |
|
| 41 |
37 40
|
impbii |
|