| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refldivcl |
|
| 2 |
|
peano2re |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
3adant3 |
|
| 5 |
4
|
adantr |
|
| 6 |
|
rerpdivcl |
|
| 7 |
|
peano2re |
|
| 8 |
6 7
|
syl |
|
| 9 |
8
|
3adant3 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
rerpdivcl |
|
| 12 |
11
|
ancoms |
|
| 13 |
12
|
3adant1 |
|
| 14 |
13
|
adantr |
|
| 15 |
1
|
3adant3 |
|
| 16 |
15
|
adantr |
|
| 17 |
6
|
3adant3 |
|
| 18 |
17
|
adantr |
|
| 19 |
|
1red |
|
| 20 |
|
3simpa |
|
| 21 |
20
|
adantr |
|
| 22 |
|
fldivle |
|
| 23 |
21 22
|
syl |
|
| 24 |
16 18 19 23
|
leadd1dd |
|
| 25 |
|
rpre |
|
| 26 |
|
ltaddsub |
|
| 27 |
25 26
|
syl3an2 |
|
| 28 |
27
|
biimpar |
|
| 29 |
|
recn |
|
| 30 |
6 29
|
syl |
|
| 31 |
30
|
3adant3 |
|
| 32 |
|
rpcn |
|
| 33 |
32
|
3ad2ant2 |
|
| 34 |
|
1cnd |
|
| 35 |
|
recn |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
|
rpne0 |
|
| 38 |
37
|
3ad2ant2 |
|
| 39 |
36 33 38
|
divcan1d |
|
| 40 |
32
|
mullidd |
|
| 41 |
40
|
3ad2ant2 |
|
| 42 |
39 41
|
oveq12d |
|
| 43 |
31 33 34 42
|
joinlmuladdmuld |
|
| 44 |
|
recn |
|
| 45 |
44
|
3ad2ant3 |
|
| 46 |
45 33 38
|
divcan1d |
|
| 47 |
43 46
|
breq12d |
|
| 48 |
47
|
adantr |
|
| 49 |
28 48
|
mpbird |
|
| 50 |
17 7
|
syl |
|
| 51 |
|
simp2 |
|
| 52 |
50 13 51
|
ltmul1d |
|
| 53 |
52
|
adantr |
|
| 54 |
49 53
|
mpbird |
|
| 55 |
5 10 14 24 54
|
lelttrd |
|
| 56 |
55
|
ex |
|