Metamath Proof Explorer


Theorem ltdifltdiv

Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion ltdifltdiv A B + C A < C B A B + 1 < C B

Proof

Step Hyp Ref Expression
1 refldivcl A B + A B
2 peano2re A B A B + 1
3 1 2 syl A B + A B + 1
4 3 3adant3 A B + C A B + 1
5 4 adantr A B + C A < C B A B + 1
6 rerpdivcl A B + A B
7 peano2re A B A B + 1
8 6 7 syl A B + A B + 1
9 8 3adant3 A B + C A B + 1
10 9 adantr A B + C A < C B A B + 1
11 rerpdivcl C B + C B
12 11 ancoms B + C C B
13 12 3adant1 A B + C C B
14 13 adantr A B + C A < C B C B
15 1 3adant3 A B + C A B
16 15 adantr A B + C A < C B A B
17 6 3adant3 A B + C A B
18 17 adantr A B + C A < C B A B
19 1red A B + C A < C B 1
20 3simpa A B + C A B +
21 20 adantr A B + C A < C B A B +
22 fldivle A B + A B A B
23 21 22 syl A B + C A < C B A B A B
24 16 18 19 23 leadd1dd A B + C A < C B A B + 1 A B + 1
25 rpre B + B
26 ltaddsub A B C A + B < C A < C B
27 25 26 syl3an2 A B + C A + B < C A < C B
28 27 biimpar A B + C A < C B A + B < C
29 recn A B A B
30 6 29 syl A B + A B
31 30 3adant3 A B + C A B
32 rpcn B + B
33 32 3ad2ant2 A B + C B
34 1cnd A B + C 1
35 recn A A
36 35 3ad2ant1 A B + C A
37 rpne0 B + B 0
38 37 3ad2ant2 A B + C B 0
39 36 33 38 divcan1d A B + C A B B = A
40 32 mulid2d B + 1 B = B
41 40 3ad2ant2 A B + C 1 B = B
42 39 41 oveq12d A B + C A B B + 1 B = A + B
43 31 33 34 42 joinlmuladdmuld A B + C A B + 1 B = A + B
44 recn C C
45 44 3ad2ant3 A B + C C
46 45 33 38 divcan1d A B + C C B B = C
47 43 46 breq12d A B + C A B + 1 B < C B B A + B < C
48 47 adantr A B + C A < C B A B + 1 B < C B B A + B < C
49 28 48 mpbird A B + C A < C B A B + 1 B < C B B
50 17 7 syl A B + C A B + 1
51 simp2 A B + C B +
52 50 13 51 ltmul1d A B + C A B + 1 < C B A B + 1 B < C B B
53 52 adantr A B + C A < C B A B + 1 < C B A B + 1 B < C B B
54 49 53 mpbird A B + C A < C B A B + 1 < C B
55 5 10 14 24 54 lelttrd A B + C A < C B A B + 1 < C B
56 55 ex A B + C A < C B A B + 1 < C B