Step |
Hyp |
Ref |
Expression |
1 |
|
refldivcl |
|
2 |
|
peano2re |
|
3 |
1 2
|
syl |
|
4 |
3
|
3adant3 |
|
5 |
4
|
adantr |
|
6 |
|
rerpdivcl |
|
7 |
|
peano2re |
|
8 |
6 7
|
syl |
|
9 |
8
|
3adant3 |
|
10 |
9
|
adantr |
|
11 |
|
rerpdivcl |
|
12 |
11
|
ancoms |
|
13 |
12
|
3adant1 |
|
14 |
13
|
adantr |
|
15 |
1
|
3adant3 |
|
16 |
15
|
adantr |
|
17 |
6
|
3adant3 |
|
18 |
17
|
adantr |
|
19 |
|
1red |
|
20 |
|
3simpa |
|
21 |
20
|
adantr |
|
22 |
|
fldivle |
|
23 |
21 22
|
syl |
|
24 |
16 18 19 23
|
leadd1dd |
|
25 |
|
rpre |
|
26 |
|
ltaddsub |
|
27 |
25 26
|
syl3an2 |
|
28 |
27
|
biimpar |
|
29 |
|
recn |
|
30 |
6 29
|
syl |
|
31 |
30
|
3adant3 |
|
32 |
|
rpcn |
|
33 |
32
|
3ad2ant2 |
|
34 |
|
1cnd |
|
35 |
|
recn |
|
36 |
35
|
3ad2ant1 |
|
37 |
|
rpne0 |
|
38 |
37
|
3ad2ant2 |
|
39 |
36 33 38
|
divcan1d |
|
40 |
32
|
mulid2d |
|
41 |
40
|
3ad2ant2 |
|
42 |
39 41
|
oveq12d |
|
43 |
31 33 34 42
|
joinlmuladdmuld |
|
44 |
|
recn |
|
45 |
44
|
3ad2ant3 |
|
46 |
45 33 38
|
divcan1d |
|
47 |
43 46
|
breq12d |
|
48 |
47
|
adantr |
|
49 |
28 48
|
mpbird |
|
50 |
17 7
|
syl |
|
51 |
|
simp2 |
|
52 |
50 13 51
|
ltmul1d |
|
53 |
52
|
adantr |
|
54 |
49 53
|
mpbird |
|
55 |
5 10 14 24 54
|
lelttrd |
|
56 |
55
|
ex |
|