Metamath Proof Explorer


Theorem ltdiv1i

Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
Assertion ltdiv1i 0 < C A < B A C < B C

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 ltdiv1 A B C 0 < C A < B A C < B C
5 1 2 4 mp3an12 C 0 < C A < B A C < B C
6 3 5 mpan 0 < C A < B A C < B C