Metamath Proof Explorer


Theorem ltdiv1ii

Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
ltmul1i.4 0 < C
Assertion ltdiv1ii A < B A C < B C

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 ltmul1i.4 0 < C
5 1 2 3 ltdiv1i 0 < C A < B A C < B C
6 4 5 ax-mp A < B A C < B C