Metamath Proof Explorer


Theorem ltdiv2

Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005)

Ref Expression
Assertion ltdiv2 A 0 < A B 0 < B C 0 < C A < B C B < C A

Proof

Step Hyp Ref Expression
1 ltrec A 0 < A B 0 < B A < B 1 B < 1 A
2 1 3adant3 A 0 < A B 0 < B C 0 < C A < B 1 B < 1 A
3 gt0ne0 B 0 < B B 0
4 rereccl B B 0 1 B
5 3 4 syldan B 0 < B 1 B
6 gt0ne0 A 0 < A A 0
7 rereccl A A 0 1 A
8 6 7 syldan A 0 < A 1 A
9 ltmul2 1 B 1 A C 0 < C 1 B < 1 A C 1 B < C 1 A
10 8 9 syl3an2 1 B A 0 < A C 0 < C 1 B < 1 A C 1 B < C 1 A
11 5 10 syl3an1 B 0 < B A 0 < A C 0 < C 1 B < 1 A C 1 B < C 1 A
12 recn C C
13 12 adantr C 0 < C C
14 recn B B
15 14 adantr B 0 < B B
16 15 3 jca B 0 < B B B 0
17 recn A A
18 17 adantr A 0 < A A
19 18 6 jca A 0 < A A A 0
20 divrec C B B 0 C B = C 1 B
21 20 3expb C B B 0 C B = C 1 B
22 21 3adant3 C B B 0 A A 0 C B = C 1 B
23 divrec C A A 0 C A = C 1 A
24 23 3expb C A A 0 C A = C 1 A
25 24 3adant2 C B B 0 A A 0 C A = C 1 A
26 22 25 breq12d C B B 0 A A 0 C B < C A C 1 B < C 1 A
27 13 16 19 26 syl3an C 0 < C B 0 < B A 0 < A C B < C A C 1 B < C 1 A
28 27 3coml B 0 < B A 0 < A C 0 < C C B < C A C 1 B < C 1 A
29 11 28 bitr4d B 0 < B A 0 < A C 0 < C 1 B < 1 A C B < C A
30 29 3com12 A 0 < A B 0 < B C 0 < C 1 B < 1 A C B < C A
31 2 30 bitrd A 0 < A B 0 < B C 0 < C A < B C B < C A