Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
gt0ne0 |
|
3 |
1 2
|
jca |
|
4 |
|
redivcl |
|
5 |
4
|
3expb |
|
6 |
3 5
|
sylan2 |
|
7 |
6
|
3adant3 |
|
8 |
|
simp3 |
|
9 |
|
simp2 |
|
10 |
|
ltmul1 |
|
11 |
7 8 9 10
|
syl3anc |
|
12 |
11
|
3adant3r |
|
13 |
|
recn |
|
14 |
13
|
adantr |
|
15 |
|
recn |
|
16 |
15
|
ad2antrl |
|
17 |
2
|
adantl |
|
18 |
14 16 17
|
divcan1d |
|
19 |
18
|
3adant3 |
|
20 |
19
|
breq1d |
|
21 |
|
remulcl |
|
22 |
21
|
ancoms |
|
23 |
22
|
adantrr |
|
24 |
23
|
3adant1 |
|
25 |
|
ltdiv1 |
|
26 |
24 25
|
syld3an2 |
|
27 |
|
recn |
|
28 |
27
|
adantr |
|
29 |
|
gt0ne0 |
|
30 |
28 29
|
jca |
|
31 |
|
divcan3 |
|
32 |
31
|
3expb |
|
33 |
15 30 32
|
syl2an |
|
34 |
33
|
3adant1 |
|
35 |
34
|
breq2d |
|
36 |
26 35
|
bitrd |
|
37 |
36
|
3adant2r |
|
38 |
12 20 37
|
3bitrd |
|