Metamath Proof Explorer


Theorem ltdiv23d

Description: Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltdiv23d.1 φ A
ltdiv23d.2 φ B +
ltdiv23d.3 φ C +
ltdiv23d.4 φ A B < C
Assertion ltdiv23d φ A C < B

Proof

Step Hyp Ref Expression
1 ltdiv23d.1 φ A
2 ltdiv23d.2 φ B +
3 ltdiv23d.3 φ C +
4 ltdiv23d.4 φ A B < C
5 2 rpregt0d φ B 0 < B
6 3 rpregt0d φ C 0 < C
7 ltdiv23 A B 0 < B C 0 < C A B < C A C < B
8 1 5 6 7 syl3anc φ A B < C A C < B
9 4 8 mpbid φ A C < B