Metamath Proof Explorer


Theorem ltdiv23i

Description: Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
Assertion ltdiv23i 0 < B 0 < C A B < C A C < B

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 ltdiv23 A B 0 < B C 0 < C A B < C A C < B
5 1 4 mp3an1 B 0 < B C 0 < C A B < C A C < B
6 2 5 mpanl1 0 < B C 0 < C A B < C A C < B
7 3 6 mpanr1 0 < B 0 < C A B < C A C < B