Metamath Proof Explorer


Theorem ltdiv23ii

Description: Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
ltdiv23i.4 0 < B
ltdiv23i.5 0 < C
Assertion ltdiv23ii A B < C A C < B

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 ltdiv23i.4 0 < B
5 ltdiv23i.5 0 < C
6 1 2 3 ltdiv23i 0 < B 0 < C A B < C A C < B
7 4 5 6 mp2an A B < C A C < B