Metamath Proof Explorer


Theorem ltdiv23neg

Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ltdiv23neg.1 φ A
ltdiv23neg.2 φ B
ltdiv23neg.3 φ B < 0
ltdiv23neg.4 φ C
ltdiv23neg.5 φ C < 0
Assertion ltdiv23neg φ A B < C A C < B

Proof

Step Hyp Ref Expression
1 ltdiv23neg.1 φ A
2 ltdiv23neg.2 φ B
3 ltdiv23neg.3 φ B < 0
4 ltdiv23neg.4 φ C
5 ltdiv23neg.5 φ C < 0
6 2 3 ltned φ B 0
7 1 2 6 redivcld φ A B
8 7 4 2 3 ltmulneg φ A B < C C B < A B B
9 recn A A
10 1 9 syl φ A
11 recn B B
12 2 11 syl φ B
13 10 12 6 divcan1d φ A B B = A
14 13 breq2d φ C B < A B B C B < A
15 remulcl C B C B
16 4 2 15 syl2anc φ C B
17 4 5 ltned φ C 0
18 4 17 rereccld φ 1 C
19 4 5 reclt0d φ 1 C < 0
20 16 1 18 19 ltmulneg φ C B < A A 1 C < C B 1 C
21 recn C C
22 4 21 syl φ C
23 10 22 17 divrecd φ A C = A 1 C
24 23 eqcomd φ A 1 C = A C
25 22 12 mulcld φ C B
26 25 22 17 divrecd φ C B C = C B 1 C
27 divcan3 B C C 0 C B C = B
28 27 3expb B C C 0 C B C = B
29 12 22 17 28 syl12anc φ C B C = B
30 26 29 eqtr3d φ C B 1 C = B
31 24 30 breq12d φ A 1 C < C B 1 C A C < B
32 20 31 bitrd φ C B < A A C < B
33 8 14 32 3bitrd φ A B < C A C < B