Step |
Hyp |
Ref |
Expression |
1 |
|
ltdiv23neg.1 |
|
2 |
|
ltdiv23neg.2 |
|
3 |
|
ltdiv23neg.3 |
|
4 |
|
ltdiv23neg.4 |
|
5 |
|
ltdiv23neg.5 |
|
6 |
2 3
|
ltned |
|
7 |
1 2 6
|
redivcld |
|
8 |
7 4 2 3
|
ltmulneg |
|
9 |
|
recn |
|
10 |
1 9
|
syl |
|
11 |
|
recn |
|
12 |
2 11
|
syl |
|
13 |
10 12 6
|
divcan1d |
|
14 |
13
|
breq2d |
|
15 |
|
remulcl |
|
16 |
4 2 15
|
syl2anc |
|
17 |
4 5
|
ltned |
|
18 |
4 17
|
rereccld |
|
19 |
4 5
|
reclt0d |
|
20 |
16 1 18 19
|
ltmulneg |
|
21 |
|
recn |
|
22 |
4 21
|
syl |
|
23 |
10 22 17
|
divrecd |
|
24 |
23
|
eqcomd |
|
25 |
22 12
|
mulcld |
|
26 |
25 22 17
|
divrecd |
|
27 |
|
divcan3 |
|
28 |
27
|
3expb |
|
29 |
12 22 17 28
|
syl12anc |
|
30 |
26 29
|
eqtr3d |
|
31 |
24 30
|
breq12d |
|
32 |
20 31
|
bitrd |
|
33 |
8 14 32
|
3bitrd |
|