Metamath Proof Explorer


Theorem ltdiv2dd

Description: Division of a positive number by both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltdiv2dd.a φ A +
ltdiv2dd.b φ B +
ltdiv2dd.c φ C +
ltdiv2dd.altb φ A < B
Assertion ltdiv2dd φ C B < C A

Proof

Step Hyp Ref Expression
1 ltdiv2dd.a φ A +
2 ltdiv2dd.b φ B +
3 ltdiv2dd.c φ C +
4 ltdiv2dd.altb φ A < B
5 1 2 3 ltdiv2d φ A < B C B < C A
6 4 5 mpbid φ C B < C A