Metamath Proof Explorer


Theorem ltdivgt1

Description: Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses ltdivgt1.1 φ A +
ltdivgt1.2 φ B +
Assertion ltdivgt1 φ 1 < B A B < A

Proof

Step Hyp Ref Expression
1 ltdivgt1.1 φ A +
2 ltdivgt1.2 φ B +
3 1rp 1 +
4 3 a1i φ 1 +
5 4 2 1 ltdiv2d φ 1 < B A B < A 1
6 1 rpcnd φ A
7 6 div1d φ A 1 = A
8 7 breq2d φ A B < A 1 A B < A
9 5 8 bitrd φ 1 < B A B < A