Metamath Proof Explorer


Theorem ltdivmul

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion ltdivmul A B C 0 < C A C < B A < C B

Proof

Step Hyp Ref Expression
1 remulcl C B C B
2 1 ancoms B C C B
3 2 adantrr B C 0 < C C B
4 3 3adant1 A B C 0 < C C B
5 ltdiv1 A C B C 0 < C A < C B A C < C B C
6 4 5 syld3an2 A B C 0 < C A < C B A C < C B C
7 recn B B
8 7 adantr B C 0 < C B
9 recn C C
10 9 ad2antrl B C 0 < C C
11 gt0ne0 C 0 < C C 0
12 11 adantl B C 0 < C C 0
13 8 10 12 divcan3d B C 0 < C C B C = B
14 13 3adant1 A B C 0 < C C B C = B
15 14 breq2d A B C 0 < C A C < C B C A C < B
16 6 15 bitr2d A B C 0 < C A C < B A < C B