Metamath Proof Explorer


Theorem ltdivmul2

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion ltdivmul2 A B C 0 < C A C < B A < B C

Proof

Step Hyp Ref Expression
1 ltdivmul A B C 0 < C A C < B A < C B
2 recn B B
3 recn C C
4 mulcom B C B C = C B
5 2 3 4 syl2an B C B C = C B
6 5 adantrr B C 0 < C B C = C B
7 6 3adant1 A B C 0 < C B C = C B
8 7 breq2d A B C 0 < C A < B C A < C B
9 1 8 bitr4d A B C 0 < C A C < B A < B C