Metamath Proof Explorer


Theorem ltdivp1i

Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
Assertion ltdivp1i 0 A 0 C A < B C + 1 A C < B

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 1re 1
5 3 4 readdcli C + 1
6 3 ltp1i C < C + 1
7 3 5 6 ltleii C C + 1
8 lemul2a C C + 1 A 0 A C C + 1 A C A C + 1
9 7 8 mpan2 C C + 1 A 0 A A C A C + 1
10 3 5 9 mp3an12 A 0 A A C A C + 1
11 1 10 mpan 0 A A C A C + 1
12 11 3ad2ant1 0 A 0 C A < B C + 1 A C A C + 1
13 0re 0
14 13 3 5 lelttri 0 C C < C + 1 0 < C + 1
15 6 14 mpan2 0 C 0 < C + 1
16 5 gt0ne0i 0 < C + 1 C + 1 0
17 2 5 redivclzi C + 1 0 B C + 1
18 16 17 syl 0 < C + 1 B C + 1
19 ltmul1 A B C + 1 C + 1 0 < C + 1 A < B C + 1 A C + 1 < B C + 1 C + 1
20 1 19 mp3an1 B C + 1 C + 1 0 < C + 1 A < B C + 1 A C + 1 < B C + 1 C + 1
21 5 20 mpanr1 B C + 1 0 < C + 1 A < B C + 1 A C + 1 < B C + 1 C + 1
22 18 21 mpancom 0 < C + 1 A < B C + 1 A C + 1 < B C + 1 C + 1
23 22 biimpd 0 < C + 1 A < B C + 1 A C + 1 < B C + 1 C + 1
24 15 23 syl 0 C A < B C + 1 A C + 1 < B C + 1 C + 1
25 24 imp 0 C A < B C + 1 A C + 1 < B C + 1 C + 1
26 2 recni B
27 5 recni C + 1
28 26 27 divcan1zi C + 1 0 B C + 1 C + 1 = B
29 15 16 28 3syl 0 C B C + 1 C + 1 = B
30 29 adantr 0 C A < B C + 1 B C + 1 C + 1 = B
31 25 30 breqtrd 0 C A < B C + 1 A C + 1 < B
32 31 3adant1 0 A 0 C A < B C + 1 A C + 1 < B
33 1 3 remulcli A C
34 1 5 remulcli A C + 1
35 33 34 2 lelttri A C A C + 1 A C + 1 < B A C < B
36 12 32 35 syl2anc 0 A 0 C A < B C + 1 A C < B