Metamath Proof Explorer


Theorem lterpq

Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013) (New usage is discouraged.)

Ref Expression
Assertion lterpq A < 𝑝𝑸 B / 𝑸 A < 𝑸 / 𝑸 B

Proof

Step Hyp Ref Expression
1 df-ltpq < 𝑝𝑸 = x y | x 𝑵 × 𝑵 y 𝑵 × 𝑵 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x
2 opabssxp x y | x 𝑵 × 𝑵 y 𝑵 × 𝑵 1 st x 𝑵 2 nd y < 𝑵 1 st y 𝑵 2 nd x 𝑵 × 𝑵 × 𝑵 × 𝑵
3 1 2 eqsstri < 𝑝𝑸 𝑵 × 𝑵 × 𝑵 × 𝑵
4 3 brel A < 𝑝𝑸 B A 𝑵 × 𝑵 B 𝑵 × 𝑵
5 ltrelnq < 𝑸 𝑸 × 𝑸
6 5 brel / 𝑸 A < 𝑸 / 𝑸 B / 𝑸 A 𝑸 / 𝑸 B 𝑸
7 elpqn / 𝑸 A 𝑸 / 𝑸 A 𝑵 × 𝑵
8 elpqn / 𝑸 B 𝑸 / 𝑸 B 𝑵 × 𝑵
9 nqerf / 𝑸 : 𝑵 × 𝑵 𝑸
10 9 fdmi dom / 𝑸 = 𝑵 × 𝑵
11 0nelxp ¬ 𝑵 × 𝑵
12 10 11 ndmfvrcl / 𝑸 A 𝑵 × 𝑵 A 𝑵 × 𝑵
13 10 11 ndmfvrcl / 𝑸 B 𝑵 × 𝑵 B 𝑵 × 𝑵
14 12 13 anim12i / 𝑸 A 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵 A 𝑵 × 𝑵 B 𝑵 × 𝑵
15 7 8 14 syl2an / 𝑸 A 𝑸 / 𝑸 B 𝑸 A 𝑵 × 𝑵 B 𝑵 × 𝑵
16 6 15 syl / 𝑸 A < 𝑸 / 𝑸 B A 𝑵 × 𝑵 B 𝑵 × 𝑵
17 xp1st A 𝑵 × 𝑵 1 st A 𝑵
18 xp2nd B 𝑵 × 𝑵 2 nd B 𝑵
19 mulclpi 1 st A 𝑵 2 nd B 𝑵 1 st A 𝑵 2 nd B 𝑵
20 17 18 19 syl2an A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st A 𝑵 2 nd B 𝑵
21 ltmpi 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
22 20 21 syl A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
23 nqercl A 𝑵 × 𝑵 / 𝑸 A 𝑸
24 nqercl B 𝑵 × 𝑵 / 𝑸 B 𝑸
25 ordpinq / 𝑸 A 𝑸 / 𝑸 B 𝑸 / 𝑸 A < 𝑸 / 𝑸 B 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
26 23 24 25 syl2an A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A < 𝑸 / 𝑸 B 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
27 1st2nd2 A 𝑵 × 𝑵 A = 1 st A 2 nd A
28 1st2nd2 B 𝑵 × 𝑵 B = 1 st B 2 nd B
29 27 28 breqan12d A 𝑵 × 𝑵 B 𝑵 × 𝑵 A < 𝑝𝑸 B 1 st A 2 nd A < 𝑝𝑸 1 st B 2 nd B
30 ordpipq 1 st A 2 nd A < 𝑝𝑸 1 st B 2 nd B 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A
31 29 30 bitrdi A 𝑵 × 𝑵 B 𝑵 × 𝑵 A < 𝑝𝑸 B 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A
32 xp1st / 𝑸 A 𝑵 × 𝑵 1 st / 𝑸 A 𝑵
33 23 7 32 3syl A 𝑵 × 𝑵 1 st / 𝑸 A 𝑵
34 xp2nd / 𝑸 B 𝑵 × 𝑵 2 nd / 𝑸 B 𝑵
35 24 8 34 3syl B 𝑵 × 𝑵 2 nd / 𝑸 B 𝑵
36 mulclpi 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵
37 33 35 36 syl2an A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵
38 ltmpi 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st A 𝑵 2 nd B < 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st B 𝑵 2 nd A
39 37 38 syl A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st A 𝑵 2 nd B < 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st B 𝑵 2 nd A
40 mulcompi 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B
41 40 a1i A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B
42 nqerrel A 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A
43 23 7 syl A 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵
44 enqbreq2 A 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A 1 st A 𝑵 2 nd / 𝑸 A = 1 st / 𝑸 A 𝑵 2 nd A
45 43 44 mpdan A 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A 1 st A 𝑵 2 nd / 𝑸 A = 1 st / 𝑸 A 𝑵 2 nd A
46 42 45 mpbid A 𝑵 × 𝑵 1 st A 𝑵 2 nd / 𝑸 A = 1 st / 𝑸 A 𝑵 2 nd A
47 46 eqcomd A 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd A = 1 st A 𝑵 2 nd / 𝑸 A
48 nqerrel B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B
49 24 8 syl B 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵
50 enqbreq2 B 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B 1 st B 𝑵 2 nd / 𝑸 B = 1 st / 𝑸 B 𝑵 2 nd B
51 49 50 mpdan B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B 1 st B 𝑵 2 nd / 𝑸 B = 1 st / 𝑸 B 𝑵 2 nd B
52 48 51 mpbid B 𝑵 × 𝑵 1 st B 𝑵 2 nd / 𝑸 B = 1 st / 𝑸 B 𝑵 2 nd B
53 47 52 oveqan12d A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd A 𝑵 1 st B 𝑵 2 nd / 𝑸 B = 1 st A 𝑵 2 nd / 𝑸 A 𝑵 1 st / 𝑸 B 𝑵 2 nd B
54 mulcompi 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st B 𝑵 2 nd A = 1 st B 𝑵 2 nd A 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B
55 fvex 1 st B V
56 fvex 2 nd A V
57 fvex 1 st / 𝑸 A V
58 mulcompi x 𝑵 y = y 𝑵 x
59 mulasspi x 𝑵 y 𝑵 z = x 𝑵 y 𝑵 z
60 fvex 2 nd / 𝑸 B V
61 55 56 57 58 59 60 caov411 1 st B 𝑵 2 nd A 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B = 1 st / 𝑸 A 𝑵 2 nd A 𝑵 1 st B 𝑵 2 nd / 𝑸 B
62 54 61 eqtri 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st B 𝑵 2 nd A = 1 st / 𝑸 A 𝑵 2 nd A 𝑵 1 st B 𝑵 2 nd / 𝑸 B
63 mulcompi 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A = 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A 𝑵 1 st A 𝑵 2 nd B
64 fvex 1 st / 𝑸 B V
65 fvex 2 nd / 𝑸 A V
66 fvex 1 st A V
67 fvex 2 nd B V
68 64 65 66 58 59 67 caov411 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd / 𝑸 A 𝑵 1 st / 𝑸 B 𝑵 2 nd B
69 63 68 eqtri 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A = 1 st A 𝑵 2 nd / 𝑸 A 𝑵 1 st / 𝑸 B 𝑵 2 nd B
70 53 62 69 3eqtr4g A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st B 𝑵 2 nd A = 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
71 41 70 breq12d A 𝑵 × 𝑵 B 𝑵 × 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st A 𝑵 2 nd B < 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
72 31 39 71 3bitrd A 𝑵 × 𝑵 B 𝑵 × 𝑵 A < 𝑝𝑸 B 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 A 𝑵 2 nd / 𝑸 B < 𝑵 1 st A 𝑵 2 nd B 𝑵 1 st / 𝑸 B 𝑵 2 nd / 𝑸 A
73 22 26 72 3bitr4rd A 𝑵 × 𝑵 B 𝑵 × 𝑵 A < 𝑝𝑸 B / 𝑸 A < 𝑸 / 𝑸 B
74 4 16 73 pm5.21nii A < 𝑝𝑸 B / 𝑸 A < 𝑸 / 𝑸 B