Metamath Proof Explorer


Theorem ltesubnnd

Description: Subtracting an integer number from another number decreases it. See ltsubrpd . (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ltesubnnd.1 φ M
ltesubnnd.2 φ N
Assertion ltesubnnd φ M + 1 - N M

Proof

Step Hyp Ref Expression
1 ltesubnnd.1 φ M
2 ltesubnnd.2 φ N
3 1 zcnd φ M
4 1cnd φ 1
5 2 nncnd φ N
6 3 4 5 addsubd φ M + 1 - N = M - N + 1
7 1 zred φ M
8 2 nnrpd φ N +
9 7 8 ltsubrpd φ M N < M
10 2 nnzd φ N
11 1 10 zsubcld φ M N
12 zltp1le M N M M N < M M - N + 1 M
13 11 1 12 syl2anc φ M N < M M - N + 1 M
14 9 13 mpbid φ M - N + 1 M
15 6 14 eqbrtrd φ M + 1 - N M