Metamath Proof Explorer


Theorem ltexp2a

Description: Ordering relationship for exponentiation. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion ltexp2a A M N 1 < A M < N A M < A N

Proof

Step Hyp Ref Expression
1 simpl1 A M N 1 < A M < N A
2 0red A M N 1 < A M < N 0
3 1red A M N 1 < A M < N 1
4 0lt1 0 < 1
5 4 a1i A M N 1 < A M < N 0 < 1
6 simprl A M N 1 < A M < N 1 < A
7 2 3 1 5 6 lttrd A M N 1 < A M < N 0 < A
8 1 7 elrpd A M N 1 < A M < N A +
9 simpl2 A M N 1 < A M < N M
10 rpexpcl A + M A M +
11 8 9 10 syl2anc A M N 1 < A M < N A M +
12 11 rpred A M N 1 < A M < N A M
13 12 recnd A M N 1 < A M < N A M
14 13 mulid2d A M N 1 < A M < N 1 A M = A M
15 simprr A M N 1 < A M < N M < N
16 simpl3 A M N 1 < A M < N N
17 znnsub M N M < N N M
18 9 16 17 syl2anc A M N 1 < A M < N M < N N M
19 15 18 mpbid A M N 1 < A M < N N M
20 expgt1 A N M 1 < A 1 < A N M
21 1 19 6 20 syl3anc A M N 1 < A M < N 1 < A N M
22 1 recnd A M N 1 < A M < N A
23 7 gt0ne0d A M N 1 < A M < N A 0
24 expsub A A 0 N M A N M = A N A M
25 22 23 16 9 24 syl22anc A M N 1 < A M < N A N M = A N A M
26 21 25 breqtrd A M N 1 < A M < N 1 < A N A M
27 rpexpcl A + N A N +
28 8 16 27 syl2anc A M N 1 < A M < N A N +
29 28 rpred A M N 1 < A M < N A N
30 3 29 11 ltmuldivd A M N 1 < A M < N 1 A M < A N 1 < A N A M
31 26 30 mpbird A M N 1 < A M < N 1 A M < A N
32 14 31 eqbrtrrd A M N 1 < A M < N A M < A N