Metamath Proof Explorer


Theorem ltexp2d

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 φ A
ltexp2d.2 φ M
ltexp2d.3 φ N
ltexp2d.4 φ 1 < A
Assertion ltexp2d φ M < N A M < A N

Proof

Step Hyp Ref Expression
1 resqcld.1 φ A
2 ltexp2d.2 φ M
3 ltexp2d.3 φ N
4 ltexp2d.4 φ 1 < A
5 ltexp2 A M N 1 < A M < N A M < A N
6 1 2 3 4 5 syl31anc φ M < N A M < A N