Metamath Proof Explorer


Theorem ltexp2r

Description: The power of a positive number smaller than 1 decreases as its exponent increases. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion ltexp2r A + M N A < 1 M < N A N < A M

Proof

Step Hyp Ref Expression
1 simpl1 A + M N A < 1 A +
2 1 rpcnd A + M N A < 1 A
3 1 rpne0d A + M N A < 1 A 0
4 simpl2 A + M N A < 1 M
5 exprec A A 0 M 1 A M = 1 A M
6 2 3 4 5 syl3anc A + M N A < 1 1 A M = 1 A M
7 simpl3 A + M N A < 1 N
8 exprec A A 0 N 1 A N = 1 A N
9 2 3 7 8 syl3anc A + M N A < 1 1 A N = 1 A N
10 6 9 breq12d A + M N A < 1 1 A M < 1 A N 1 A M < 1 A N
11 1 rprecred A + M N A < 1 1 A
12 simpr A + M N A < 1 A < 1
13 1 reclt1d A + M N A < 1 A < 1 1 < 1 A
14 12 13 mpbid A + M N A < 1 1 < 1 A
15 ltexp2 1 A M N 1 < 1 A M < N 1 A M < 1 A N
16 11 4 7 14 15 syl31anc A + M N A < 1 M < N 1 A M < 1 A N
17 rpexpcl A + N A N +
18 1 7 17 syl2anc A + M N A < 1 A N +
19 rpexpcl A + M A M +
20 1 4 19 syl2anc A + M N A < 1 A M +
21 18 20 ltrecd A + M N A < 1 A N < A M 1 A M < 1 A N
22 10 16 21 3bitr4d A + M N A < 1 M < N A N < A M