Metamath Proof Explorer


Theorem ltexp2rd

Description: The power of a positive number smaller than 1 decreases as its exponent increases. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpcld.1 φ A +
rpexpcld.2 φ N
ltexp2rd.3 φ M
ltexp2rd.4 φ A < 1
Assertion ltexp2rd φ M < N A N < A M

Proof

Step Hyp Ref Expression
1 rpexpcld.1 φ A +
2 rpexpcld.2 φ N
3 ltexp2rd.3 φ M
4 ltexp2rd.4 φ A < 1
5 ltexp2r A + M N A < 1 M < N A N < A M
6 1 3 2 4 5 syl31anc φ M < N A N < A M