Metamath Proof Explorer


Theorem ltexprlem5

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C = x | y ¬ y A y + 𝑸 x B
Assertion ltexprlem5 B 𝑷 A B C 𝑷

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C = x | y ¬ y A y + 𝑸 x B
2 1 ltexprlem1 B 𝑷 A B C
3 0pss C C
4 2 3 syl6ibr B 𝑷 A B C
5 4 imp B 𝑷 A B C
6 1 ltexprlem2 B 𝑷 C 𝑸
7 6 adantr B 𝑷 A B C 𝑸
8 1 ltexprlem3 B 𝑷 x C z z < 𝑸 x z C
9 1 ltexprlem4 B 𝑷 x C z z C x < 𝑸 z
10 df-rex z C x < 𝑸 z z z C x < 𝑸 z
11 9 10 syl6ibr B 𝑷 x C z C x < 𝑸 z
12 8 11 jcad B 𝑷 x C z z < 𝑸 x z C z C x < 𝑸 z
13 12 ralrimiv B 𝑷 x C z z < 𝑸 x z C z C x < 𝑸 z
14 13 adantr B 𝑷 A B x C z z < 𝑸 x z C z C x < 𝑸 z
15 elnp C 𝑷 C C 𝑸 x C z z < 𝑸 x z C z C x < 𝑸 z
16 5 7 14 15 syl21anbrc B 𝑷 A B C 𝑷