Step |
Hyp |
Ref |
Expression |
1 |
|
ltexprlem.1 |
|
2 |
1
|
ltexprlem5 |
|
3 |
|
ltaddpr |
|
4 |
|
addclpr |
|
5 |
|
ltprord |
|
6 |
4 5
|
syldan |
|
7 |
3 6
|
mpbid |
|
8 |
7
|
pssssd |
|
9 |
8
|
sseld |
|
10 |
9
|
2a1d |
|
11 |
10
|
com4r |
|
12 |
11
|
expd |
|
13 |
|
prnmadd |
|
14 |
13
|
ex |
|
15 |
|
elprnq |
|
16 |
|
addnqf |
|
17 |
16
|
fdmi |
|
18 |
|
0nnq |
|
19 |
17 18
|
ndmovrcl |
|
20 |
15 19
|
syl |
|
21 |
20
|
simpld |
|
22 |
|
vex |
|
23 |
22
|
prlem934 |
|
24 |
23
|
adantr |
|
25 |
|
prub |
|
26 |
|
ltexnq |
|
27 |
26
|
adantl |
|
28 |
25 27
|
sylibd |
|
29 |
28
|
ex |
|
30 |
29
|
ad2ant2r |
|
31 |
|
vex |
|
32 |
|
vex |
|
33 |
|
addcomnq |
|
34 |
|
addassnq |
|
35 |
31 22 32 33 34
|
caov32 |
|
36 |
|
oveq1 |
|
37 |
35 36
|
eqtrid |
|
38 |
37
|
eleq1d |
|
39 |
38
|
biimpar |
|
40 |
|
ovex |
|
41 |
|
eleq1 |
|
42 |
41
|
notbid |
|
43 |
|
oveq1 |
|
44 |
43
|
eleq1d |
|
45 |
42 44
|
anbi12d |
|
46 |
40 45
|
spcev |
|
47 |
1
|
abeq2i |
|
48 |
46 47
|
sylibr |
|
49 |
39 48
|
sylan2 |
|
50 |
|
df-plp |
|
51 |
|
addclnq |
|
52 |
50 51
|
genpprecl |
|
53 |
49 52
|
sylan2i |
|
54 |
53
|
exp4d |
|
55 |
54
|
imp42 |
|
56 |
|
eleq1 |
|
57 |
56
|
ad2antrl |
|
58 |
55 57
|
mpbid |
|
59 |
58
|
exp32 |
|
60 |
59
|
exlimdv |
|
61 |
30 60
|
syl6d |
|
62 |
24 61
|
rexlimddv |
|
63 |
62
|
com14 |
|
64 |
63
|
adantl |
|
65 |
21 64
|
mpd |
|
66 |
65
|
ex |
|
67 |
66
|
exlimdv |
|
68 |
14 67
|
syld |
|
69 |
68
|
com4t |
|
70 |
69
|
expd |
|
71 |
12 70
|
pm2.61i |
|
72 |
2 71
|
syl5 |
|
73 |
72
|
expd |
|
74 |
73
|
com34 |
|
75 |
74
|
pm2.43d |
|
76 |
75
|
imp31 |
|
77 |
76
|
ssrdv |
|