Metamath Proof Explorer
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof
shortened by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltlecasei.1 |
|
|
|
ltlecasei.2 |
|
|
|
ltlecasei.3 |
|
|
|
ltlecasei.4 |
|
|
Assertion |
ltlecasei |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltlecasei.1 |
|
2 |
|
ltlecasei.2 |
|
3 |
|
ltlecasei.3 |
|
4 |
|
ltlecasei.4 |
|
5 |
|
lelttric |
|
6 |
4 3 5
|
syl2anc |
|
7 |
2 1 6
|
mpjaodan |
|