Metamath Proof Explorer


Theorem ltlecasei

Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltlecasei.1 φ A < B ψ
ltlecasei.2 φ B A ψ
ltlecasei.3 φ A
ltlecasei.4 φ B
Assertion ltlecasei φ ψ

Proof

Step Hyp Ref Expression
1 ltlecasei.1 φ A < B ψ
2 ltlecasei.2 φ B A ψ
3 ltlecasei.3 φ A
4 ltlecasei.4 φ B
5 lelttric B A B A A < B
6 4 3 5 syl2anc φ B A A < B
7 2 1 6 mpjaodan φ ψ