Metamath Proof Explorer


Theorem ltled

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
ltled.1 φ A < B
Assertion ltled φ A B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 ltled.1 φ A < B
4 ltle A B A < B A B
5 1 2 4 syl2anc φ A < B A B
6 3 5 mpd φ A B