Metamath Proof Explorer


Theorem ltlei

Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion ltlei A < B A B

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 ltle A B A < B A B
4 1 2 3 mp2an A < B A B