Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltleletr
Next ⟩
letr
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltleletr
Description:
Transitive law, weaker form of
ltletr
.
(Contributed by
AV
, 14-Oct-2018)
Ref
Expression
Assertion
ltleletr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
<
B
∧
B
≤
C
→
A
≤
C
Proof
Step
Hyp
Ref
Expression
1
3simpb
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℝ
∧
C
∈
ℝ
2
ltletr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
<
B
∧
B
≤
C
→
A
<
C
3
ltle
⊢
A
∈
ℝ
∧
C
∈
ℝ
→
A
<
C
→
A
≤
C
4
1
2
3
sylsyld
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
<
B
∧
B
≤
C
→
A
≤
C