Metamath Proof Explorer


Theorem ltleletr

Description: Transitive law, weaker form of ltletr . (Contributed by AV, 14-Oct-2018)

Ref Expression
Assertion ltleletr A B C A < B B C A C

Proof

Step Hyp Ref Expression
1 3simpb A B C A C
2 ltletr A B C A < B B C A < C
3 ltle A C A < C A C
4 1 2 3 sylsyld A B C A < B B C A C