Metamath Proof Explorer


Theorem ltlen

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)

Ref Expression
Assertion ltlen A B A < B A B B A

Proof

Step Hyp Ref Expression
1 ltle A B A < B A B
2 ltne A A < B B A
3 2 ex A A < B B A
4 3 adantr A B A < B B A
5 1 4 jcad A B A < B A B B A
6 leloe A B A B A < B A = B
7 df-ne B A ¬ B = A
8 pm2.24 B = A ¬ B = A A < B
9 8 eqcoms A = B ¬ B = A A < B
10 7 9 syl5bi A = B B A A < B
11 10 jao1i A < B A = B B A A < B
12 6 11 syl6bi A B A B B A A < B
13 12 impd A B A B B A A < B
14 5 13 impbid A B A < B A B B A