Metamath Proof Explorer


Theorem ltleni

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
Assertion ltleni A < B A B B A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 ltlen A B A < B A B B A
4 1 2 3 mp2an A < B A B B A