Metamath Proof Explorer


Theorem ltletri

Description: 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
lt.3 C
Assertion ltletri A < B B C A < C

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 lt.3 C
4 ltletr A B C A < B B C A < C
5 1 2 3 4 mp3an A < B B C A < C