Metamath Proof Explorer


Theorem ltltncvr

Description: A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012)

Ref Expression
Hypotheses ltltncvr.b B = Base K
ltltncvr.s < ˙ = < K
ltltncvr.c C = K
Assertion ltltncvr K A X B Y B Z B X < ˙ Y Y < ˙ Z ¬ X C Z

Proof

Step Hyp Ref Expression
1 ltltncvr.b B = Base K
2 ltltncvr.s < ˙ = < K
3 ltltncvr.c C = K
4 simpll K A X B Y B Z B X C Z K A
5 simplr1 K A X B Y B Z B X C Z X B
6 simplr3 K A X B Y B Z B X C Z Z B
7 simplr2 K A X B Y B Z B X C Z Y B
8 simpr K A X B Y B Z B X C Z X C Z
9 1 2 3 cvrnbtwn K A X B Z B Y B X C Z ¬ X < ˙ Y Y < ˙ Z
10 4 5 6 7 8 9 syl131anc K A X B Y B Z B X C Z ¬ X < ˙ Y Y < ˙ Z
11 10 ex K A X B Y B Z B X C Z ¬ X < ˙ Y Y < ˙ Z
12 11 con2d K A X B Y B Z B X < ˙ Y Y < ˙ Z ¬ X C Z