Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
ltltncvr
Next ⟩
ltcvrntr
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltltncvr
Description:
A chained strong ordering is not a covers relation.
(Contributed by
NM
, 18-Jun-2012)
Ref
Expression
Hypotheses
ltltncvr.b
⊢
B
=
Base
K
ltltncvr.s
⊢
<
˙
=
<
K
ltltncvr.c
⊢
C
=
⋖
K
Assertion
ltltncvr
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
<
˙
Y
∧
Y
<
˙
Z
→
¬
X
C
Z
Proof
Step
Hyp
Ref
Expression
1
ltltncvr.b
⊢
B
=
Base
K
2
ltltncvr.s
⊢
<
˙
=
<
K
3
ltltncvr.c
⊢
C
=
⋖
K
4
simpll
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
∧
X
C
Z
→
K
∈
A
5
simplr1
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
∧
X
C
Z
→
X
∈
B
6
simplr3
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
∧
X
C
Z
→
Z
∈
B
7
simplr2
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
∧
X
C
Z
→
Y
∈
B
8
simpr
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
∧
X
C
Z
→
X
C
Z
9
1
2
3
cvrnbtwn
⊢
K
∈
A
∧
X
∈
B
∧
Z
∈
B
∧
Y
∈
B
∧
X
C
Z
→
¬
X
<
˙
Y
∧
Y
<
˙
Z
10
4
5
6
7
8
9
syl131anc
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
∧
X
C
Z
→
¬
X
<
˙
Y
∧
Y
<
˙
Z
11
10
ex
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
C
Z
→
¬
X
<
˙
Y
∧
Y
<
˙
Z
12
11
con2d
⊢
K
∈
A
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
<
˙
Y
∧
Y
<
˙
Z
→
¬
X
C
Z