Metamath Proof Explorer


Theorem ltmin

Description: Two ways of saying a number is less than the minimum of two others. (Contributed by NM, 1-Sep-2006)

Ref Expression
Assertion ltmin A B C A < if B C B C A < B A < C

Proof

Step Hyp Ref Expression
1 rexr A A *
2 rexr B B *
3 rexr C C *
4 xrltmin A * B * C * A < if B C B C A < B A < C
5 1 2 3 4 syl3an A B C A < if B C B C A < B A < C