Step |
Hyp |
Ref |
Expression |
1 |
|
ltmod.a |
|
2 |
|
ltmod.b |
|
3 |
|
ltmod.c |
|
4 |
1 2
|
modcld |
|
5 |
1 4
|
resubcld |
|
6 |
1
|
rexrd |
|
7 |
|
icossre |
|
8 |
5 6 7
|
syl2anc |
|
9 |
8 3
|
sseldd |
|
10 |
2
|
rpred |
|
11 |
9 2
|
rerpdivcld |
|
12 |
11
|
flcld |
|
13 |
12
|
zred |
|
14 |
10 13
|
remulcld |
|
15 |
5
|
rexrd |
|
16 |
|
icoltub |
|
17 |
15 6 3 16
|
syl3anc |
|
18 |
9 1 14 17
|
ltsub1dd |
|
19 |
|
icossicc |
|
20 |
19 3
|
sselid |
|
21 |
1 2 20
|
lefldiveq |
|
22 |
21
|
eqcomd |
|
23 |
22
|
oveq2d |
|
24 |
23
|
oveq2d |
|
25 |
18 24
|
breqtrd |
|
26 |
|
modval |
|
27 |
9 2 26
|
syl2anc |
|
28 |
|
modval |
|
29 |
1 2 28
|
syl2anc |
|
30 |
25 27 29
|
3brtr4d |
|