Metamath Proof Explorer


Theorem ltmul1

Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltmul1 A B C 0 < C A < B A C < B C

Proof

Step Hyp Ref Expression
1 ltmul1a A B C 0 < C A < B A C < B C
2 1 ex A B C 0 < C A < B A C < B C
3 oveq1 A = B A C = B C
4 3 a1i A B C 0 < C A = B A C = B C
5 ltmul1a B A C 0 < C B < A B C < A C
6 5 ex B A C 0 < C B < A B C < A C
7 6 3com12 A B C 0 < C B < A B C < A C
8 4 7 orim12d A B C 0 < C A = B B < A A C = B C B C < A C
9 8 con3d A B C 0 < C ¬ A C = B C B C < A C ¬ A = B B < A
10 simp1 A B C 0 < C A
11 simp3l A B C 0 < C C
12 10 11 remulcld A B C 0 < C A C
13 simp2 A B C 0 < C B
14 13 11 remulcld A B C 0 < C B C
15 12 14 lttrid A B C 0 < C A C < B C ¬ A C = B C B C < A C
16 10 13 lttrid A B C 0 < C A < B ¬ A = B B < A
17 9 15 16 3imtr4d A B C 0 < C A C < B C A < B
18 2 17 impbid A B C 0 < C A < B A C < B C