Metamath Proof Explorer


Theorem ltmul12a

Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005)

Ref Expression
Assertion ltmul12a A B 0 A A < B C D 0 C C < D A C < B D

Proof

Step Hyp Ref Expression
1 simplll A B C D 0 A A < B 0 C C < D A
2 simpllr A B C D 0 A A < B 0 C C < D B
3 simpll C D 0 C C < D C
4 simprl C D 0 C C < D 0 C
5 3 4 jca C D 0 C C < D C 0 C
6 5 ad2ant2l A B C D 0 A A < B 0 C C < D C 0 C
7 ltle A B A < B A B
8 7 imp A B A < B A B
9 8 adantrl A B 0 A A < B A B
10 9 ad2ant2r A B C D 0 A A < B 0 C C < D A B
11 lemul1a A B C 0 C A B A C B C
12 1 2 6 10 11 syl31anc A B C D 0 A A < B 0 C C < D A C B C
13 simplrl A B C D 0 A A < B C
14 simplrr A B C D 0 A A < B D
15 simpllr A B C D 0 A A < B B
16 0re 0
17 lelttr 0 A B 0 A A < B 0 < B
18 16 17 mp3an1 A B 0 A A < B 0 < B
19 18 imp A B 0 A A < B 0 < B
20 19 adantlr A B C D 0 A A < B 0 < B
21 ltmul2 C D B 0 < B C < D B C < B D
22 13 14 15 20 21 syl112anc A B C D 0 A A < B C < D B C < B D
23 22 biimpa A B C D 0 A A < B C < D B C < B D
24 23 anasss A B C D 0 A A < B C < D B C < B D
25 24 adantrrl A B C D 0 A A < B 0 C C < D B C < B D
26 remulcl A C A C
27 26 ad2ant2r A B C D A C
28 remulcl B C B C
29 28 ad2ant2lr A B C D B C
30 remulcl B D B D
31 30 ad2ant2l A B C D B D
32 lelttr A C B C B D A C B C B C < B D A C < B D
33 27 29 31 32 syl3anc A B C D A C B C B C < B D A C < B D
34 33 adantr A B C D 0 A A < B 0 C C < D A C B C B C < B D A C < B D
35 12 25 34 mp2and A B C D 0 A A < B 0 C C < D A C < B D
36 35 an4s A B 0 A A < B C D 0 C C < D A C < B D