Metamath Proof Explorer


Theorem ltmul12ad

Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φ A
divgt0d.2 φ B
lemul1ad.3 φ C
ltmul12ad.3 φ D
ltmul12ad.4 φ 0 A
ltmul12ad.5 φ A < B
ltmul12ad.6 φ 0 C
ltmul12ad.7 φ C < D
Assertion ltmul12ad φ A C < B D

Proof

Step Hyp Ref Expression
1 ltp1d.1 φ A
2 divgt0d.2 φ B
3 lemul1ad.3 φ C
4 ltmul12ad.3 φ D
5 ltmul12ad.4 φ 0 A
6 ltmul12ad.5 φ A < B
7 ltmul12ad.6 φ 0 C
8 ltmul12ad.7 φ C < D
9 1 2 jca φ A B
10 5 6 jca φ 0 A A < B
11 3 4 jca φ C D
12 7 8 jca φ 0 C C < D
13 ltmul12a A B 0 A A < B C D 0 C C < D A C < B D
14 9 10 11 12 13 syl22anc φ A C < B D