Metamath Proof Explorer


Theorem ltmul1a

Description: Lemma for ltmul1 . Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 15-May-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltmul1a A B C 0 < C A < B A C < B C

Proof

Step Hyp Ref Expression
1 simpl2 A B C 0 < C A < B B
2 simpl1 A B C 0 < C A < B A
3 1 2 resubcld A B C 0 < C A < B B A
4 simpl3l A B C 0 < C A < B C
5 simpr A B C 0 < C A < B A < B
6 2 1 posdifd A B C 0 < C A < B A < B 0 < B A
7 5 6 mpbid A B C 0 < C A < B 0 < B A
8 simpl3r A B C 0 < C A < B 0 < C
9 3 4 7 8 mulgt0d A B C 0 < C A < B 0 < B A C
10 1 recnd A B C 0 < C A < B B
11 2 recnd A B C 0 < C A < B A
12 4 recnd A B C 0 < C A < B C
13 10 11 12 subdird A B C 0 < C A < B B A C = B C A C
14 9 13 breqtrd A B C 0 < C A < B 0 < B C A C
15 2 4 remulcld A B C 0 < C A < B A C
16 1 4 remulcld A B C 0 < C A < B B C
17 15 16 posdifd A B C 0 < C A < B A C < B C 0 < B C A C
18 14 17 mpbird A B C 0 < C A < B A C < B C