Metamath Proof Explorer


Theorem ltmul2

Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005)

Ref Expression
Assertion ltmul2 A B C 0 < C A < B C A < C B

Proof

Step Hyp Ref Expression
1 ltmul1 A B C 0 < C A < B A C < B C
2 recn C C
3 recn A A
4 mulcom A C A C = C A
5 3 4 sylan A C A C = C A
6 5 3adant2 A B C A C = C A
7 recn B B
8 mulcom B C B C = C B
9 7 8 sylan B C B C = C B
10 9 3adant1 A B C B C = C B
11 6 10 breq12d A B C A C < B C C A < C B
12 2 11 syl3an3 A B C A C < B C C A < C B
13 12 3adant3r A B C 0 < C A C < B C C A < C B
14 1 13 bitrd A B C 0 < C A < B C A < C B