Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
ltmul2dd
Metamath Proof Explorer
Description: Multiplication of both sides of 'less than' by a positive number.
Theorem I.19 of Apostol p. 20. (Contributed by Mario Carneiro , 30-May-2016)
Ref
Expression
Hypotheses
ltmul1d.1
⊢ φ → A ∈ ℝ
ltmul1d.2
⊢ φ → B ∈ ℝ
ltmul1d.3
⊢ φ → C ∈ ℝ +
ltdiv1dd.4
⊢ φ → A < B
Assertion
ltmul2dd
⊢ φ → C ⁢ A < C ⁢ B
Proof
Step
Hyp
Ref
Expression
1
ltmul1d.1
⊢ φ → A ∈ ℝ
2
ltmul1d.2
⊢ φ → B ∈ ℝ
3
ltmul1d.3
⊢ φ → C ∈ ℝ +
4
ltdiv1dd.4
⊢ φ → A < B
5
1 2 3
ltmul2d
⊢ φ → A < B ↔ C ⁢ A < C ⁢ B
6
4 5
mpbid
⊢ φ → C ⁢ A < C ⁢ B