Metamath Proof Explorer


Theorem ltmuldiv

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltmuldiv A B C 0 < C A C < B A < B C

Proof

Step Hyp Ref Expression
1 simp1 A B C 0 < C A
2 simp3l A B C 0 < C C
3 1 2 remulcld A B C 0 < C A C
4 ltdiv1 A C B C 0 < C A C < B A C C < B C
5 3 4 syld3an1 A B C 0 < C A C < B A C C < B C
6 1 recnd A B C 0 < C A
7 2 recnd A B C 0 < C C
8 simp3r A B C 0 < C 0 < C
9 8 gt0ne0d A B C 0 < C C 0
10 6 7 9 divcan4d A B C 0 < C A C C = A
11 10 breq1d A B C 0 < C A C C < B C A < B C
12 5 11 bitrd A B C 0 < C A C < B A < B C