Metamath Proof Explorer


Theorem ltmulgt11

Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)

Ref Expression
Assertion ltmulgt11 A B 0 < A 1 < B A < A B

Proof

Step Hyp Ref Expression
1 1re 1
2 ltmul2 1 B A 0 < A 1 < B A 1 < A B
3 1 2 mp3an1 B A 0 < A 1 < B A 1 < A B
4 3 3impb B A 0 < A 1 < B A 1 < A B
5 4 3com12 A B 0 < A 1 < B A 1 < A B
6 ax-1rid A A 1 = A
7 6 3ad2ant1 A B 0 < A A 1 = A
8 7 breq1d A B 0 < A A 1 < A B A < A B
9 5 8 bitrd A B 0 < A 1 < B A < A B