Metamath Proof Explorer


Theorem ltmulgt12

Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)

Ref Expression
Assertion ltmulgt12 A B 0 < A 1 < B A < B A

Proof

Step Hyp Ref Expression
1 ltmulgt11 A B 0 < A 1 < B A < A B
2 recn A A
3 recn B B
4 mulcom A B A B = B A
5 2 3 4 syl2an A B A B = B A
6 5 3adant3 A B 0 < A A B = B A
7 6 breq2d A B 0 < A A < A B A < B A
8 1 7 bitrd A B 0 < A 1 < B A < B A