Metamath Proof Explorer


Theorem ltmulneg

Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ltmulneg.a φ A
ltmulneg.b φ B
ltmulneg.c φ C
ltmulneg.n φ C < 0
Assertion ltmulneg φ A < B B C < A C

Proof

Step Hyp Ref Expression
1 ltmulneg.a φ A
2 ltmulneg.b φ B
3 ltmulneg.c φ C
4 ltmulneg.n φ C < 0
5 3 4 negelrpd φ C +
6 1 2 5 ltmul1d φ A < B A C < B C
7 3 renegcld φ C
8 1 7 remulcld φ A C
9 2 7 remulcld φ B C
10 8 9 ltnegd φ A C < B C B C < A C
11 2 recnd φ B
12 7 recnd φ C
13 11 12 mulneg2d φ B C = B C
14 3 recnd φ C
15 14 negnegd φ C = C
16 15 oveq2d φ B C = B C
17 13 16 eqtr3d φ B C = B C
18 1 recnd φ A
19 18 12 mulneg2d φ A C = A C
20 15 oveq2d φ A C = A C
21 19 20 eqtr3d φ A C = A C
22 17 21 breq12d φ B C < A C B C < A C
23 6 10 22 3bitrd φ A < B B C < A C