Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltned
Next ⟩
ne0gt0d
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltned
Description:
'Greater than' implies not equal.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypotheses
ltd.1
⊢
φ
→
A
∈
ℝ
ltned.2
⊢
φ
→
A
<
B
Assertion
ltned
⊢
φ
→
A
≠
B
Proof
Step
Hyp
Ref
Expression
1
ltd.1
⊢
φ
→
A
∈
ℝ
2
ltned.2
⊢
φ
→
A
<
B
3
1
2
gtned
⊢
φ
→
B
≠
A
4
3
necomd
⊢
φ
→
A
≠
B