Metamath Proof Explorer


Theorem ltned

Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltned.2 φ A < B
Assertion ltned φ A B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltned.2 φ A < B
3 1 2 gtned φ B A
4 3 necomd φ A B